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Event-driven Consumption Intent Reasoning Using
Heterogeneous Graph Neural Networks with Meta-Topology

Anonymous Author(s)∗

ABSTRACT
Event-driven Consumption Intent refers to one’s consumption in-
tent to certain types of products triggered by a daily event. How-
ever, little prior work attempts to explicitly model the relationship
between events and consumption intentions. To fill this gap, we
propose to automatically construct a novel knowledge base — Event-
Consumption Graph (ECG) as a complement to the existing KBs.
Specifically, ECG is a heterogeneous graph that contains two types
of nodes: event nodes and product nodes, and three types of edges:
event-event edges, event-product edges and product-product edges.
Due to the semantic complexity and expressive diversity of events,
ECG can suffer from the sparsity problem. To improve the coverage
of ECG, we propose a new task Event-driven Consumption Intent
Reasoning (ECIR) to complement the ECG. The main challenge of
this task is that conventional heterogeneous graph neural network
reasoning relies on localized first-order structure information in the
single-view network that is unable to capture higher-order heteroge-
neous interactions between nodes. To address this issue, we present
a Meta-Topology based Heterogeneous Graph Neural Network
(MT-HGNN), which utilizes meta-topology induced subgraph ad-
jacency matrix to capture node’s local high-order heterogeneous
connection features. A novel multi-view information aggregation
mechanism is applied to allow each node to select the best reason-
ing path in a topology-aware manner. Experimental results show
that our approach can outperform baseline systems with a clear
margin. We also incorporate ECG into state-of-the-art sequential
recommendation system and achieve new SOTA performance.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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Event-driven Consumption Intent Reasoning, Event-Consumption
Graph, Heterogeneous Graph Reasoning
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Figure 1: Predicting the miss facts in ECG. (1) e1 is likely
to trigger the consumption intent for p1 because semantic
similar events e2 tend to need same products (2) e3 is more
likely to trigger the consumption for p3 than p5, though p3
and p5 are both e3’s indirect neighbor through e2 and e4, re-
spectively. This is because e4 is a rather general event, i.e.,
the product connecting to it cover a diverse of categories.

.
1 INTRODUCTION
Much of human consumption intent is triggered by the event [19].
For example, if one wants to “running”, he may need a pair of
“running shoes”. Mining such kind of event-product knowledge is of
great interest to social media platforms and E-commerce websites,
to help them better understand the needs of their customers and
improve their advertising strategy to the general public.

However, existing knowledge bases like ConceptNet [23] and
Atomic [21] cannot provide fine-grained information about the
relationship between events and products. To fill this gap, we pro-
pose to automatically construct a novel knowledge base Event-
Consumption Graph (ECG) as a complement of the existing knowl-
edge graphs. Specifically, as shown in Fig. 1, ECG is a heterogeneous
graph G = {V ,R} consisting of two types of nodes V = {Ve ,Vp },
where Ve denotes the event node and Vp denotes the product node,
and three types of edges R = {Ree ,Rep ,Rpp }, where Ree represents
the similarity of events; Rep indicates that the event can trigger the
consumption intention of the product, and Rpp denotes that the
products belong to the same category.

Intuitively, supervised machine learning based methods or un-
supervised rule-based methods can be applied to extract event-
product relation from large-scale E-commercial reviews and con-
struct a rough ECG. However, ECG suffers from the sparsity prob-
lem, as the complex semantics and diverse expressions of events.
For example, the event “real-time cardiac beat detection” and “heart
rate monitoring” both refer to a heart rate measurement event
and trigger the consumption intent for “smart band”, however, the
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event “real-time cardiac beat detection” can be rarely extracted
from reviews.

To address this issue, we propose a new task Event-driven Con-
sumption Intent Reasoning (ECIR) which aims to infer whether a
daily event can trigger one’s consumption intent to certain types
of products, to complement the miss facts of ECG. Heterogeneous
Graph Neural Networks (HGNNs) [3, 4, 22, 29, 30, 32, 33] can be
used to facilitate this task. However, HGNNs succeed in extracting
local features from a node’s neighborhood, it should be noted that
they primarily focus on node features and are thus less capable
of exploiting local structural properties of nodes. Specifically, uni-
form aggregation depicts one-hop relations, leaving higher-order
structural patterns within the neighborhood less attended.

However, we argue that high-order heterogeneous local struc-
tural patterns of nodes, can provide insightful guidance in our
task. As shown in Fig. 1, the first order structure can be used to
judge whether e1 can trigger p1, as the semantic similar events
tend to share the same products. However, e2, e4 both connect to e3
through the product node p4, so they share equal importance for e3
in the first order view when judging the relation between (e3,p3)
and (e3,p5). Fortunately, e2 and e4 have different high-order local
structures. In fact, e4, Free shipping, is a rather general event whose
product neighbors doesn’t connect with each other, i.e., they belong
to diverse categories. So e2 is more likely to share the missing fact
with e3.

In this work, we present a novel Meta-Topology based Hetero-
geneous Graph Neural Network (MT-HGNN), which considers the
node’s local heterogeneous higher-order connection features. In-
spired by the previous structural pattern metric method of motif in
homogeneous graphs [17], we propose the notion of meta-topology
and utilize meta-topology induced adjacency matrices to capture
nodes’ local higher-order connection features. Fig. 2 shows an ex-
ample that the heterogeneous node neighborhoods are generalized
beyond immediate neighbors when we consider a triangle-like
meta-topology. Furthermore, our method uses a attention mecha-
nism to allow each node to select the neighborhood with typical
local connection patterns to integrate information from. Intuitively,
this allows the target node to select the best reasoning path in a
topology-aware manner.

The main contributions of this paper are summarized as follows:
• We propose a novel knowledge base ECG, which contains a

wealth of information about events, products and their relation-
ships. Experimental results show that ECG can be beneficial to
recommendation systems.

•We present a model that generalizes HGNNs by introducing
multiple meta-topology induced adjacency matrices that capture
various heterogeneous higher-order structures.

•We carry out extensive experiments with their results showing
that our model, incorporating meta-topology structural patterns
into HGNNs, attains satisfactory performances.

2 PRELIMINARY
2.1 Problem Formulation
The goal of ECIR is to infer whether a daily event can trigger one’s
consumption intent to certain types of products, to complement
the missing facts of ECG. For example, as shown in Figure 1, we

�
�
�

(YHQW

3URGXFW

Event-Product

Product-Product

0HWD�7RSRORJ\

2ULJLQDO�*UDSK�&RQQHFWLRQ ,Q�0HWD�7RSRORJ\�9LHZ�

Figure 2: A triangle-like meta-topology can filter out the
event-product edge whose edge endpoints are not connected
with each other. In the meta-topology view, the edge in the
bottom right of the picture becomes a dotted line, i.e., the
weight of this edge is zero.

aim to reason whether the event e1 “Get rid of dry skin" can trig-
ger the consumption intent p1 of “Facial Sheet Mask” given the
neighbor nodes e2, p2 and p3. Formally, given an ECG G = {V ,R},
the ECIR task can be defined as the task of predicting the missing
facts R′ = {(ve , rep ,vp )|(ve , rep ,vp ) < R)}. Specifically, given the
pair (ve1 ,v

p
1 ) with event ve1 and product vp1 represented as text, we

predict the relatedness score r , which reflects the confidence that
the event can trigger the product’s consumption intention.

2.2 Meta-Topology
We observe that local connection patterns can be useful for reason-
ing the missing links between events and products. As an extension
of meta-path, we propose the notion ofmeta-topology to capture the
local structural patterns between the node and its neighborhoods.
Figure 2 shows an example of the node neighborhoods that are
induced when we consider a predefined meta-topology, showing
that the meta-topology can capture the neighborhood structure of
nodes: if the product neighbor of a single event is not connected
with each other, then a triangle-like meta-topology can filter out
the corresponding event-product edge.

Some previous studies [8, 13, 20] have explored the structure
representation of homogeneous graphs, however, the structure rep-
resentation of heterogeneous graph nodes has rarely been explored.
We borrow the idea ofmotif [12, 17, 27], which is used in capturing
the structure of homogeneous graph, and give the following formal
definition related to meta-topology.

2.2.1 Meta-topology. Given a heterogeneous graphG = (V ,R), as
well as a node type mapping function ϕ : V → A and an edge
type mapping functionψ : R → E, the meta-topology, denoted as
TG = (A, E), is a graph defined over node types A, with edges as
relations types from E.

The meta-topology of a heterogeneous graph specifies the par-
ticular structure pattern of interactions between multiple types of
nodes, which is different from the notion of moitf and meta-path.
Motif is used in homogeneous graph to [26] characterize the struc-
ture pattern consisting of a single type of node, while Meta-path
can only model the first order proximity between different types of
node and leaving the higher-order structure less attend.

A subgraph following a meta-topology is then called a meta-
topology instance of the meta-topology. We emphasize that the

2
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subgraph we denoted in this paper are all induced subgraph, which
means the subgraph’s edge set consists of all of the edges in R that
have both endpoints in the subgraph’s node set.

2.2.2 Meta-topology Induced Adjacency Matrix. Given a network
G = (V ,R), and a set H = {H1, . . . ,HT } of T meta-topologies,
We can revisit the connection relationship in the perspective of
each meta-topology to get corresponding adjacency matrices:W =

{W1,W2, . . . ,WT },Wt is defined as follows:

(Wt )i j = # of meta-topology instances contain(i, j) ∈ R. (1)

Note, the weights inWt can be used as reasonable initial estimates
of each neighbor’s importance.

3 METHOD
Wefirst construct a rough ECG by a simple rule-basedmethod. Then
we introduceMT—HGNN to infermissing links in ECG. As shown in
Figure 3, MT-HGNN consists of three components. Given an event-
product pair (ei ,pj ) in ECG,MT—HGNN employs a node embedding
module to learn the initial embedding of ei and pj , respectively.
Then MT-HGNN updates the representations of ei and pj by multi-
view neighborhood aggregation. The updated embeddings of ei and
pj are fed into a softmax layer to calculate the the relation score of
ei and pj .

3.1 Construction of ECG
In this paper, we construct the ECG via E-commercial comment
data. One reason to choose the comment data as raw dataset is
that people may describe their purchase motivation or purchase
intent, i.e., the purchased product is used for what in the comment.
For example, a review for lip balm maybe ‘It seems good! I hope
it can keep my lip away from chapping in this winter’. We can
extract the event-product pair as lip balm→ keep my lip away from
chapping. The other advantage of comment data is that it can almost
cover all kinds of products, which is able to cover a wide range
of products. Here, the event is a free-form phrase representing
a tangible purpose, state or activity which is ongoing or to be
performed. The product is defined as a certain item type.

We extract the trigger event for a certain product from comment
sentence via a pretrained language model based sequence tagging
model, BERT-CRF[2]. We first annotated 5000 review sentences
with the bio annotation standard, then the annotated dataset is split
into training, validation, and test dataset at a ratio of 8:1:1 to train a
BERT-CRF model. We evaluate the model performance in sentence
level, i.e., whether the extract event span is correct. The F1 on the
test dataset achieves 91.2%. Then the model is used to extract more
(event→ product) pair from the large-scale unlabeled dataset. In
this way, we get a large number of raw event-product pairs.

For the event-event relation, the events with similar semantic in-
formation will be connected. The event-event relation can alleviate
the sparse problem in ECG, as the events with similar semantic can
share the same product. For the product-product relation, we add
an edge between product pair if they belong to the same category.
We believe the product-product relation can provide structure in-
formation for differentiating between general and specific events.
Intuitively, the product connecting to a general event is more likely
to belong to diverse categories, and products connected with a

specific event tend to belong to the same category. For the general
event ’free shipping’, the corresponding product categories can be
diverse; but for the specific event ’swimming’, the corresponding
product is mainly swimming equipment at all. So, the density of the
product-product edge corresponding to the general event is more
sparse than that in a specific event.

We use the cosine similarity of BERT representation of the two
events to measure the semantic similarity of the two events. If the
score exceeds the threshold, we will add an edge between them. As
for the product categories, we follow the JingDong E-commercial
site’s product categorization system to judge whether the goods
belong to the same category.

3.2 Node Feature Extraction
3.2.1 Semantic Embedding. Previous approaches of graph neural
network adopt bag-of-words [29] to initialize the node representa-
tion, which either omits or fails to fully exploit the deep semantic
representation of textual objects, as well as the interactions between
them. Recent years have witnessed a surge of interest in pre-train
language models which achieves promising improvements on vari-
ous NLP tasks. In this work, we utilize a BERT [2] based approach
to learn semantic embeddings of nodes. We take product nodes as
an example to illustrate this and the same processing procedure is
also applied to event node. Specifically, for each product node vpj
in ECG, we first retrieve all the event-product pair in ECG relevant
to it. Then we processe each pair of (vei ,v

p
j ) into the form of:

[CLS] vei [CLS] vpi (2)

After that, the sequence is fed into BERT. We take the final hidden
state of the [CLS] token of each node as its representation. If vpj
occurs in K event-product pairs, we can obtain K representations
of vpj , and the final representation of vpj is the average embedding
of itsM representations.

In the end, we obtain the semantic embedding of each node in G:

X =
{
xe1 , x

e
2 , . . . , x

e
M , x

p
1 , x

p
2 , . . . , x

p
N

}
(3)

3.2.2 Structural Feature Embedding. Previous works rarely explore
the local connection patterns of the heterogeneous graph. To rem-
edy this, we propose a series of meta-topologies to extract the
subgraph patterns. The meta-topology can be seen as a generaliza-
tion of meta-path, in which we consider more complex interactions
between different types of nodes. Similar to meta-path, we can
define different meta-topology for different types of nodes.

Given graph G, the node type set A = {a1, . . . ,aL} and the
meta-topology number for each type of node U = {u1, . . . ,uL},
we denote the pre-defined meta-path structure set as

M =
{
Ma1

1 , . . . ,M
a1
u1 ; M

a2
1 , . . . ,M

a2
u2 ; . . . . . . ; M

aL
1 , . . . ,M

aL
uL

}
For each specific type ai , the pre-defined meta-topology set is
Mai = {Mai

1 , . . . ,M
ai
ui }. We construct the corresponding meta-

topology induced adjacency matrixWt as Eq. 1 shows for each meta-
topology Mt , . Note, the weights of the edge in a meta-topology
induced graph also vary.

And the corresponding induced adjacency matrices are W =

{W ai
1 ,W

ai
2 , . . . ,W

ai
ui }. In this work, the meta-topology induced

adjacency matrix of the subgraph, which contains the target node
3
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Figure 3: Architecture of the MT-HGNN model
.

and its first-order neighborhood, is used to model the target node’s
local structural pattern. We uniformly sample a fixed-size set of
each type of neighbors, instead of using full neighborhood sets, in
order to keep the feature vector dim fixed. In this way, ui structural
matrices are generated for node of type ai . Then each matrix is
then flatten a structural vector.

C = {c1, c2, . . . , cui } (4)

Here, ai denotes the node type, and c j denoted the structural vector
based on the j-th meta-topology. To fuse multiple structural vectors
to a single dense structure representation s, we use a multi-head
attention mechanism to fuse them together.

ei = q⊤ · ci

βi =
exp (ei )∑ui
j=1 exp

(
ej
)

s =
ui∑
j=1

βj · cj

(5)

Specifically, in this work, we design three kinds of meta-topology
for event and product nodes. 1 Figure 4 shows the neighborhoods
and their weights defined by different meta-topologies, which vary
significantly. M1,M2 are specially designed for event nodes, and
M3 is designed for product nodes.

For event node structure modeling, we aim to design features
that are able to capture and reflect differences between general
and specific events, i.e., the connection between the product nodes
connecting to the event is dense or sparse. Therefore, we propose
M1 andM2 to capture different kinds of connection patterns.

For product node structure modeling, we aim to avoid applying a
single uniform definition to the event node directly connected to it.
Intuitively, the connection between (V e

i ,V
p
j ) can be stronger if there

exists another event V e
k , which connects with V e

e and V p
j together.

Thus, we define M3 to keep only event neighbors connected via
a stronger bond with the product, which allows us to distinguish
between weaker ties and stronger ones.

1We did study more complicated meta-topology, but observe no further improvement
on validation dataset

M1 M2 M3

�

�

�

(YHQW 3URGXFW Event-ProductProduct-Product

Meta-Structure

Graph Architecture

�

�

�

�

�

Figure 4: Meta-topologies and the new connection relations
defined by these meta-topologies

.

Following the steps described above, we obtain the structural
embedding of each node in G:

S =
{
se1 , s

e
2 , . . . , s

e
M , s

p
1 , s

p
2 , . . . , s

p
N

}
(6)

3.2.3 Semantic and Structural Embedding Fusion. Nowwe combine
the semantic embedding x and the structural embedding s together.
We can first concatenate them [xi ⊕ si ] and then feed it into MLP.
Formally, the final node latent representation is defined as,

c1 = [xi ⊕ si ]

c2 = tanh (W2 · c1 + b2)
. . .

hi = tanh (Wl · cl−1 + bl )

(7)

l is the layer numbers of MLP. Hence, we initialize each node’s
representation with the embedding vector:

H =
{
he1 , h

e
2 , . . . , h

e
M , h

p
1 , h

p
2 , . . . , h

p
N

}
(8)
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3.3 Multi-View Neighborhood Aggregation
This module aims to learn representations of the given event and
product respectively. Then the learned representations are fed into
a score prediction module to predict the relationship of the pair.
We detail the feedforward process here.

The previous meta-path based heterogeneous graph neural net-
work [4, 29] tackle the heterogeneous property by utilizing prede-
fined meta-paths to transform the heterogeneous graph to multiple
homogeneous graphs and aggregate the information from nodes
of the same type to the target node. In spite of success achieved in
conventional tasks like Node Classification and Node Clustering,
such the approaches are not suitable for our task. In our task, aggre-
gating information from different types of nodes is more important
as our goal is to exploit the relation between different types of
nodes, i.e., event node and product node.

In this paper, we conduct the aggregation process based on the
multi-view architecture proposed in [37]. In themulti-view architec-
ture of a heterogeneous graph, each relation space is characterized
in a single viewpoint, enabling us to interact the target node with
all types of nodes by aggregating along each view space.

In the following subsections, we take the learning process for
event node V e

k as an example to illustrate the aggregation process,
which means the k-th event node denoted as e . The same proce-
dure is adopted in the aggregation process of the product node. In
general, firstly, inner-view representations of V e

k in different views
are produced by inner-view aggregation. Hence, we get the inner-
view representation ue−ek and u

e−p
k for V e

k , which are generated
by aggregating information along the event-event edge and event-
product edge, respectively. After that,ue−ek andue−pk are fused with
cross-view aggregation to get the latent representation of V e

k .

3.3.1 Inner-ViewAggregation. Firstly, we aggregate the event-product
relation. As the event-product edge contains a frequency attribute,
With representation zi j for each product node that has an interac-
tion with the target event node, we mathematically represent the
aggregation process as the following function shows:

ue−дk = σ
(
We−g · Aggree−д

({
hj ,∀j ∈ C(k)

})
+ be−д

)
(9)

where C(i) is the set of product nodes connected to the target
event node, hj is the representation vector of nodes, Aggree−д is
the heterogeneous node aggregation funtion.We−д and be−д are
the weight and bias of a neural network. σ denotes a non-linear
activation function, in our model, we use elu as the activation
function.

There are many kinds of aggregation function to be chosen from.
One popular aggregation function is the mean operator which is a
linear approximation of a localized spectral convolution [11]. Due
to the fact the influence of interactions between nodes may vary
dramatically, using this method to represent the target node which
may not be optimal, To allow the neighbors to contribute differently,
we assign a weight for each interaction, as the GAT [28] does:

ue−дk = σ
©­«W ·


∑

j ∈C(k )

αk jxk j

 + be−дª®¬ (10)

where αkh denotes the attention weight of the interaction with Vj
and target node. The attention αk j is parameterized with a two-
layer attention network which is defined as follows:

α∗k j = wT
2 · σ

(
W1 ·

[
hk ⊕ hj

]
+ b1

)
+ b2 (11)

Here hk is the target node’s embedding. The final attention weight
is obtained by normalizing the above attention scores using Softmax
function as follows:

αk j =
exp

(
α∗k j

)
∑
j ∈C(k) exp

(
α∗k j

) (12)

As for the aggregation for event-event relation, the aggregation
function is represented mathematically as follows:

ue−ek = σ
(
We−e · Aggree-e

({
hj ,∀j ∈ N (k)

})
+ be−e

)
(13)

As the formula shows, the architecture of event-event aggregator
is almost the same as the event-product one.

3.3.2 Cross-View Aggregation. In order to learn better target node
representation, we consider the relation between different view
space. A standard MLP is used to combine these two vectors to get
the final event target node representation oe , which is defined as,

d1 =
[
ue−ek ⊕ ue−дk

]
c2 = σ (W2 · d1 + b2)
. . .

oe = σ (Wl · dl−1 + bl )

(14)

where l is index of a hidden layer.

3.4 Relations Score Prediction
The aggregation procedure of product target node is the same as
event node as illustrated above, but the module parameters for them
are mutually independent. With the dense representation of the
given event oe and the given product op , we can first concatenate
them

[
oe ⊕ hp

]
and then feed it into MLP for relatedness prediction

as:
g1 =

[
oe ⊕ op

]
g2 = σ (W2 · g1 + b2)
. . .

gl−1 = σ (Wl · gl−1 + bl )

rep = σ (wT · gl−1)

(15)

Here, l is the index of a hidden layer, and rep is the predicted
relatedness score from event e to product p.

3.5 Optimization
In this paper, we specify the cross-entropy as the objective function.
rep denotes the probability of the event e being a valid usage scene
of product p, then the loss function is:

J (Θ) = −
∑

ei ,pj ∈D
yei ,pj log

(
rei ,pj

)
+

(1 − yei ,pj ) log(1 − rei ,pj )

(16)

Parameters of MT-HGNN models are optimized using the standard
Adam[? ] algorithm.

5
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4 EXPERIMENT
In this section, we try to answer the following research questions
through extensive experiments.

RQ1: Can our MT-HGNN outperform the SOTA heterogeneous
graph embedding models?

RQ2: Is it useful to incorporate the high-order local structure
feature for the event driven consumption intent reasoning task?

RQ3:Whether the ECG can facilitate in the downstream tasks
like sequential recommendation?

4.1 Experimental Setup
4.1.1 Dataset. To our knowledge, there is no public corpus for
evaluating the task of identifying the relationship between event
and product. To evaluate our model, we randomly select 8000 event-
product pairs from the raw corpus and annotated the data with
0/1 label, here 0 denotes that the pair is not a valid pair and 1 is
vice versa. For the selected event-product pairs, two annotators are
asked to annotate whether it is a valid pair.

The agreement score between our two annotators, measured
using Cohen’s Kappa Coefficient [1], is significant (kappa =0.73 for
event-product relatedness reasoning). We evaluate our model and
the baseline performance on this dataset. For evaluation, we adopt
Precision(P), Recall(R) and F1-score(F1) as evaluation metrics, and
Significant test is conducted using paired t-test at a significance
level of 0.05.

4.1.2 Baseline Systems. We compare our MT-HGNN model with
the following baseline methods.

Pretrained Model-Based Classification Methods
• BERT [2]: we use a fine-tuned BERT to get the representation

vector of the given product and event respectively, then the two
vectors are concatenated together and then fed to an MLP to get
the relatedness score of the event-product pair.

Homogeneous Graph Embedding Methods
To adapt homogeneous graph embedding methods to heteroge-

neous node representation, we directly adopt a simple method that
treats event and product as nodes of the same type.

• GAT [2] is a a semi-supervised homogeneous graph neural
network. This model leverages attention mechanism to assign a
proper weight for the neighbors of the target node.

• GraLSP [8] is another homogeneous graph neural network
which incorporates local structural patterns to current GNNs. It
uses anonymous walks to measure local structural patterns and rep-
resent themwith vectors which are incorporated into neighborhood
aggregation.

Meta-path Heterogeneous Graph Embedding Methods
•metapath2vec [3] is a traditional heterogeneous model that

generated node embeddings with the help of a skip-gram model
whose input is a series of random walks guided by a predefined
meta-path. In our task, the meta-path we use is event-event-product-
product-event, which can capture all kinds of relation in the ECG.
We use the metapath2vec++ model variant in our experiments.

•HAN [29] is a heterogeneous GNN. It learns meta-path specific
node embeddings from different meta-path based homogeneous
graphs. Furthermore, it leverages the attention mechanism to learn
the importance of each meta-path and fuse the semantic informa-
tion into one vector representation for the specific task.

•MAGNN [4] is a meta-path based heterogeneous graph embed-
ding method. Different from the previous meta-path based methods,
it takes the intermediate nodes along the meta-path and the rela-
tion betweenmultiple meta-paths into consideration, which achieve
further improvement.

4.1.3 ImplementationDetails. For ourmodel and other aggregation-
based baselines, the semantic representation of the node content
is initialized with BERT-based model. Dropout strategy [24] is ap-
plied to alleviate the overfitting problem. We utilize Adam[9] for
optimization in which the learning rate is initialized as 0.001 with a
linear weight decay as 0.0001. The batch size is set as 64 while the
dropout rate is 0.5. We use batch normalization to regularize the
data. The activation function used during fusing the structure and
semantic representation is tanh. Both the homogeneous aggregator
and heterogeneous aggregator are implemented as attention aggre-
gator. To address the sparseness of negative examples, we apply a
weighted binary cross loss function as our objective.

For the traditional model metapath2vec, we set the window size
to 5, walk length to 100, walks over the node to 40, and the number
of negative samples to 5. For homogeneous graph neural networks
method, including GAT, GraLSP, we directly treat the product and
event node as the same type node. The dropout rate is set to 0.5.
We use the same splits of training, validation, and testing dataset.
For GAT, HAN, and MAGNN, we set the number of attention heads
to 8. For HAN and MAGNN, we set the dimension of the attention
vector in inter meta-path aggregation to 128. The meta-path we
use is “event-product-event”,“event-event”,“product-event-product”,
and “product-product”. For a fair comparison, we set the embedding
dimension of all the models mentioned above to 100. Experiments
of baselines model are conducted on tasks like node classification,
link prediction (between same type node), and node clustering,
which is not very similar to ours. So we adapt the baseline model to
our task in the following way: We firstly use the baseline models’
feature representation module to get the representation of event
and product node. Then we concatenated the two vectors and feed
it into the classification layer, the loss is then used to train the
model. This setup is the same as our MT-HGNN does.

4.2 Experiment Results
We list the accuracy (%) of baseline methods and MT-HGNN on
our annotated dataset in Table 1. From the results we make the
following observations:

(1) Comparison between BERT and the other heterogeneous
graph based method shows that, conduct reasoning process in the
raw event-product graph could increase the performance of model.
The raw event-product graph provides a global view on the whole
review corpus. The heterogeneous and homogeneous neighborhood
provided by the graph gives additional evidences for identifying
whether the relationship is valid.

(2) In the line of heterogeneous models, The HAN model has
a poor performance on our task, even worse than homogeneous
graph neural networks like GAT. The bad performance indicates
that, to discriminate the event product pair relationship, it’s bene-
ficial to aggregate information from both homogeneous neighbor
nodes and heterogeneous neighbor nodes. HAN only aggregates in-
formation from homogeneous meta-path based neighborhood (end

6
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Table 1: ECIR Results

Model Precision(%) Recall(%) F1(%)
BERT [2] 78.9 89.8 84.0
GAT [28] 86.3 90.5 88.4
GraLSP [8] 85.7 92.8 89.1
metapath2vec [3] 84.6 89.4 86.9
HAN [29] 84.7 89.2 86.9
MAGNN [4] 87.8 91.9 89.8
MT-HGNN 91.3 94.5 92.9

nodes on the meta-path) which is helpful for mining the similarity
between homogeneous nodes, eg. the aggregation along meta-path
Movie-Actor-Movie can contribute to the co-actor relation model-
ing. However, in our task, we aim to reveal the relevance between
heterogeneous nodes, i.e., event and product nodes. So explicit inter-
action between event nodes and product node is significant, which
is ignored by HAN. That’s why HAN is even defeated by metap-
ath2vec method as it preserves the higher-order connection pattern
across heterogeneous nodes. MAGNNmodel improves HAN by tak-
ing intermediate nodes along the meta-path into consideration, in
which the interaction between heterogeneous neighbor nodes is sat-
isfied implicitly and leads to performance improvement. Our model
exploits the heterogeneous nodes interaction and node topology
pattern properties simultaneously and make further improvements.

(3) In the line of homogeneous model, the GraLSP model outper-
forms GAT, as GAT only takes the node features into consideration
but ignores the structure pattern features, but GraLSP model uses
anonymous walks to effectively measuring local structural patterns
and represent them as embeddings, which are incorporated into
neighborhood aggregation. This indicates the importance and use-
fulness of modeling node structure features in our task. As GraLSP
is mainly designed for homogeneous graph, it’s not able to fully
exploit the heterogeneous connection patterns and can only exploit
structure feature of a single meta-path based homogeneous graph.
But our MT-HGNN model can capture the complex connection pat-
terns between heterogeneous nodes with the help of meta-topology,
which is more suitable for our task.

4.3 Further Analysis
4.3.1 Ablation study. To verify the effectiveness of each compo-
nent of our model, we further conduct experiments on different
MT-HGNN variants. Here we report the results obtained from the
variants in Table 2. The variants are as follows:

•MT-HGNN/EE The event-event relation aggregation module
is removed from the final model.

•MT-HGNN/PP The product-product relation aggregation mod-
ule is removed from the final model.

• MT-HGNN/Stru The meta-topology feature extraction module
is removed from the final model.

We make the following observations:
(1) Comparison between MT-HGNN and MT-HGNN/PP, and

between MT-HGNN/EE show that adding the edge event-event
and product-product could increase the performance of the model.
The raw event-product graph is a bipartite graph, there only exists

Table 2: Ablation Study Results

Model Precision(%) Recall(%) F1(%)
MT-HGNN/EE 83.4 91.2 87.1
MT-HGNN/PP 84.6 92.2 88.2
MT-HGNN/Stru 85.8 92.6 89.1
MT-HGNN 91.3 94.5 92.9

the event-product relation. We enrich the connection relationship
between event and product with event-event and product-product
edges. The result verifies the usefulness of the heterogeneous graph
construction. We believe the event-event edge is important because
it provides extra reasoning process. For example, when the model
tries to identify the relationship between event e1 and product p2, it
could give a relatively high score if there exists a path e1 → e2 → p2
as the events with similar semantics tend to share the same product.
The product-product edge associates products belonging to the
same category which can be helpful for identifying whether the
event is general or specific. A general eventmay connect to a diverse
range of products and so they are not connected with each other
which leads to a low-density subgraph.

(2) The performance of MT-HGNNmodel degrades greatly when
removing the edge attribution aggregation module, which proves
that it’s worth carefully designing the aggregation method of the
edge attribute of frequency. It’s obvious that the higher the fre-
quency is, the larger the probability that the given pair is valid is.
In this paper, we use a simple attention mechanism to learn the
interaction between the node content and edge attribute, we leave
the other elaborate methods as future research work.

(3) The MT-HGNNmodel outperform the SOTAmeta-path based
heterogeneous graph reasoning framework, which confirms our
motivation that learning nodes’ higher-order local structures fea-
ture could support the event-consumption reasoning process, and
reveals that the meta-path based heterogeneous graph reasoning
framework fails to model significant heterogeneous structure pat-
tern. The local structure feature extracted by our meta-topology of
the target node with its neighborhood could be useful for reasoning.

4.3.2 Visualization. In addition to the quantitative evaluations of
our GNN models, we also visualize node embeddings to conduct
a qualitative assessment of the embedding results. We randomly
select 50 event-product pairs from the positive testing set of our
dataset and then project the embeddings of these nodes into a 2-
dimensional space using t-SNE. Here we illustrate the visualization
results of GAT, MAGNN, and MT-HGNN in Figure 5. Where purple
points and yellow points indicate events and products, respectively.

Based on the visualization, one can quickly tell the differences
among graph embedding models in terms of their learning abil-
ity towards heterogeneous graphs. As a traditional homogeneous
graph embedding, GAT cannot effectively divide event and product
nodes into two different groups. In contrast, MAGNN, a SOTA het-
erogeneous model, can partition the two types of nodes. And we
can see that our proposed MT-HGNN obtains the best embedding
results, with two well-separated event and product groups, and an
aligned correlation of event-product pairs.
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Figure 5: Node embedding visualization results
.

Table 3: The Cosine Similarity of the Given Event Pair

Event1 Event2 Cosine Similarity
MT-HGNN MT-HGNN/Stru

Send gifts Free shippment 0.571 0.382
Store good Discount 0.650 0.440
exams English exams 0.523 0.796

4.3.3 Case Study. We conduct case study to further investigate
whether our proposed MT-HGNN framework can learn better node
embedding which preserves local higher-order structure. To ver-
ify this, we select several event node pairs from the test dataset,
in which the event nodes are far apart in the network but have
similar local structures. Each node’s representation is built by our
MT-HGNN network and MT-HGNN/Stru. Then we take the cosine
similarity between the respective feature embeddings as the simi-
larity score between the two nodes. MT-HGNN/Stru in the Table 3
means it doesn’t take the meta-topology into consideration.

In the first two cases, although “send gifts” and “free shipment”
are little similar semantically based on observation of cosine simi-
larity between them, they share the similar topological structures
since they are all recognized as general events and connect with
a diverse category of products. In this case, it’s very reasonable
to see that the similarity computed through MT-HGNN is higher
than the similarity generated by MT-HGNN/Stru. The second case
about “Store goods” and “Discount” is similar to the first case. In
the last case, we can observe clearly that similarity generated from
MT-HGNN is lower than it produced from MT-HGNN/Stru. This is
because they share divergent local structural features even if they
are almost the same literally. In more detail, “exams” is recognized
as a more general event than “English exams” since “exams” may
cover a range of exams of different subjects, such as “Volleyball
exams”, “Computer exams”, and it will be connected to wider range
of products in the graph than “English exams”. Therefore, the out-
come in Table 3 proves that our MT-HGNN succeeds in learning

more accurate representations for nodes by fusing both semantic
and structural information.

4.4 Apply ECG to Sequential Recommendation
Task

In order or evaluate the usefulness of the ECG, we introduce the
task of Attribute-aware Sequential Recommendation, which is a hot
topic recently. Given a sequence of items in chronological order
that a user has interacted with before, this task[35] aims to predict
the next item that the user may act on. Furthermore, each item i
has some attributes, such as category, brand and description text.

Each item can be linked to a product node in ECG with the re-
trieval method BM25. In this paper, we directly apply classic context-
aware sequential recommendation model on the ECG-enhanced
item attributes to verify the usefulness of ECG, i.e., the events con-
necting to the product node are treated as additional feature of
the item. Although a fine-grained reasoning module may lead to
further improvement, we leave it for future research.

We choose the the attribute-aware sequential recommendation
model, S3—Rec[38] to conduct the experiment. S3—Rec incorpo-
rates the attribute of the items by devising four self-supervised
objectives to learn the correlations among attribute, item, subse-
quence, and sequence. S3—Rec achieved the SOTA performance
on public real-world datasets like Amazon Beauty, Amazon Sports,
Amazon Toys, Yelp, LastFM, etc.

Although there are many public data sets available for sequen-
tial recommendation, however, they are not suitable for this work
because the product name, which is necessary for linking products
to ECG, has been replaced with ID for security reasons in many
datasets. As for the well-known Amazon dataset which provides
detailed information about product names, it is an English data set
and our annotations are done in Chinese.

To facilitate our study, we further construct the dataset from
JingDong review data. In JingDong review data, each review docu-
ment would correspond to a unique transaction record. Also, each
review has a user ID. So we can build purchase users’ interaction
sequence from this. Following conventional setting[6, 35], unpopu-
lar items and inactive users with fewer than 5 records was filtered
out. Considering some recent researchers argue the effectiveness of
different ranking strategies for testing recommender systems, we
direct rank the ground-truth item with all items during evaluation
procedure. The evaluation dataset contains 92586 user and 11505
item, the total interaction num is 1242181.

We first utilize the fine-grained categories and the brands as item
attributes to train S3 − Rec . After that, the trigger event knowledge
provided by the ECG is incorporated to train another model which
we call S3 − RecE .

As the events are free-form phrase, we use BERT[2] to encode
each event to initialize the event embedding matrix.

We show the result of the two models in Table 4. The comparison
between S3−Rec and ECG-enhanced S3−Rec show that the event-
consumption knowledge improves the performance of sequential
recommendation, demonstrating the ECG is a valuable resource.
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Table 4: Sequential Recommendation Results

Model HIT@10 HIT@20 NDCG@10 NDCG@20
S3 − Rec 0.0815 0.1186 0.0450 0.0543
S3 − RecE 0.0809 0.1223 0.0452 0.0556

5 RELATEDWORK
5.1 Graph Neural Networks
Recent years have witnessed numerous works focusing on neu-
ral networks over graphs [28, 31, 34]. The goal of graph neural
networks (GNN) is to embed each node hv in the graph to a low-
dimensional vector space. The learned vector can be used for many
downstream tasks, e.g., node classification, node clustering, and
link prediction. Our task can be cast as the link prediction between
event nodes and product nodes in the heterogenous graph. In gen-
eral, GNNs can be classified into two categories: spectral-based
GNNs and spatial-based GNNs.

Spectral-based GNNs were first developed to perform graph con-
volution in the Fourier domain of a graph. GCN[10] is the one that
receives the most attention in this category. GCN learns node em-
beddings by aggregating features of their neighboring nodes. The
main disadvantage of spectral-based GNNs is that they can only per-
form transductive learning, which means that they cannot naturally
generalize to unseen nodes and suffer from poor scalability.

Researchers then propose Spatial-based GNNs to conduct induc-
tive learning on the graph. They directly define convolutions in the
graph domain and get node embeddings by sampling and aggregat-
ing features from a node’s local neighborhood. GraphSAGE [5] is
founded to facilitate generalization to unseen nodes for graphs by
learning the aggregating function for the graph rather than individ-
ual dense vectors of each node. Inspired by this idea, many other
spatial-based GNN variants have been proposed, in which the most
famous one is GAT [28]. GAT incorporates the attention mecha-
nism into the aggregator function to assign relative importance
weight to each neighbor.

Previous studies mainly consider the node features so that are
not capable of capturing the complex neighborhood structures, i.e.,
structure similarity. Recent works point out this kind of weakness
of traditional neighborhood aggregation based GNNs in theory.
[14] shows that GCNs should be wide and deep enough to detect a
given subgraph, and [18] states that what GCN learns is the node
degrees and connected components. To address this issue, recent
works propose exploiting higher-order local structural patterns
of the graph. [12] uses indicative motifs (a kind of connect pat-
tern) to capture the high-order connection pattern, in which the
aggregation is along with the weighted multi-hop motif adjacency
matrices. However, it does not explicitly model the structural fea-
ture of nodes. [8] proposes explicitly capturing complex structure
features via anonymous walks [7, 15], and each kind of anony-
mous walks is embedded into dense vectors to participate in the
aggregation process.

The main difference between this line of work and our work, is
that we mainly focus on the heterogeneous graph. There are differ-
ent types of nodes in the heterogeneous graph, so the node features
tend to lie in different feature spaces. Furthermore, the diverse edge

types make the connection patterns of the heterogeneous graph
more complex than that in a homogeneous graph.

5.2 Heterogeneous Graph Embedding
Heterogeneous graph embedding [25] aims to use a dense vector to
represent the node in a heterogenous graph while preserving the
semantic and topology of the graph. ESIM [22] takes meta-paths
as guidance to learn node embeddings for similarity search. Meta-
path2vec [3] generates random walks with the guide of a single
meta-path, the paths are then fed into a skip-gram model [16] to
generate node embeddings. HIN2Vec [30] learns HIN embeddings
via predicting different relations in HINs. HAN [29] converts a
heterogeneous graph into multiple meta-path based homogeneous
graphs, and then uses a graph attention network architecture to
aggregate information from neighbors and leverages the attention
mechanism to combine various meta-paths. MAGNN [4] transforms
the heterogeneous graph into multiple homogeneous graphs in a
similar way as HAN, but takes the intermediate nodes along with
the meta-path and the relation between multiple meta-paths into
consideration to improve the model performance. In another line of
research, several methods perform HIN embedding without using
meta-paths. HetGNN [32] preserves the first-order and second-
order proximity based on graph neural network. MV-ACM [37]
processes the sparsity problems in HIN by incorporating comple-
mentary information from different semantic spaces.

However, previous studies mainly focus on learning first-order
proximity similarity in the single view network. Recent studies
attempts to depicts the high-order structure information between
nodes with network schema, meta-graph [33, 36]. They mainly
focus on modeling the complex semantic information with the
none linear combination of different types of meta-paths. Different
with previous work, we model heterogeneous high-order topology
property with meta-topology induced from adjacency matrix and
we aim to effectively model the local connectivity pattern of a single
target node to facilitate the reasoning path selection.

6 CONCLUSION
We have presented ECG, the first comprehensive knowledge base
of event-driven consumption intent. It provides the relationships
between events, between events and products, and between prod-
ucts. To improve the coverage of ECG, we propose a new task of
event-driven consumption intent reasoning together with a meta-
topology based heterogeneous graph neural network for the task.
The proposed model utilizes a novel motif-based attention for the
task of semi-supervised node classification. Attention is used to
allow different nodes to select the most task-relevant neighborhood
to integrate information from. Experimental results show the ad-
vantage of the proposed approach over previous work. By applying
the ECG to the sequential recommendation task, we demonstrate
that ECG can provide useful external knowledge for downstream
applications.

In the future, we plan to extend ECG with more sophisticated
relations, such as the temporal and causal relation between events
to help give an explainable reasoning.
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